Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Immunol ; 11: 552596, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193318

RESUMO

Pharmaceutical manufacturing relies on rigorous methods of quality control of drugs and in particular of the physico-chemical and functional characterizations of monoclonal antibodies. To that end, robust bioassays are very often limited to reporter gene assays and the use of immortalized cell lines that are supposed to mimic immune cells such as natural killer (NK) cells to the detriment of primary materials, which are appreciated for their biological validity but are also difficult to exploit due to the great diversity between individuals. Here, we characterized the phenotype of the peripheral blood circulating cytotoxic cells of 30 healthy donors, in particular the repertoire of cytotoxic markers, using flow cytometry. In parallel, we characterized the antibody-dependent cellular cytotoxicity (ADCC) effector functions of these primary cells by measuring their cytolytic activity against a cancer cell-line expressing HER2 in the presence of trastuzumab and with regards to FCGR3A genotype. We could not establish a correlation or grouping of individuals using the data generated from whole peripheral blood mononuclear cells, however the isolation of the CD56-positive population, which is composed not only of NK cells but also of natural killer T (NKT) and γδ-T cells, as well as subsets of activated cytotoxic T cells, monocytes and dendritic cells, made it possible to standardize the parameters of the ADCC and enhance the overall functional avidity without however eliminating the inter-individual diversity. Finally, the use of primary CD56+ cells in ADCC experiments comparing glycoengineered variants of trastuzumab was conclusive to test the limits of this type of ex vivo system. Although the effector functions of CD56+ cells reflected to some extent the in vitro receptor binding properties and cytolytic activity data using NK92 cells, as previously published, reaching a functional avidity plateau could limit their use in a quality control framework.


Assuntos
Afinidade de Anticorpos , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Linfócitos/imunologia , Trastuzumab , Humanos , Relação Estrutura-Atividade , Trastuzumab/farmacocinética , Trastuzumab/farmacologia
3.
Elife ; 92020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33108271

RESUMO

Cell cycle is a cellular process that is subject to stringent control. In contrast to the wealth of knowledge of proteins controlling the cell cycle, very little is known about the molecular role of lncRNAs (long noncoding RNAs) in cell-cycle progression. By performing genome-wide transcriptome analyses in cell-cycle-synchronized cells, we observed cell-cycle phase-specific induction of >2000 lncRNAs. Further, we demonstrate that an S-phase-upregulated lncRNA, SUNO1, facilitates cell-cycle progression by promoting YAP1-mediated gene expression. SUNO1 facilitates the cell-cycle-specific transcription of WTIP, a positive regulator of YAP1, by promoting the co-activator, DDX5-mediated stabilization of RNA polymerase II on chromatin. Finally, elevated SUNO1 levels are associated with poor cancer prognosis and tumorigenicity, implying its pro-survival role. Thus, we demonstrate the role of a S-phase up-regulated lncRNA in cell-cycle progression via modulating the expression of genes controlling cell proliferation.


Assuntos
Proliferação de Células/genética , Proteínas Correpressoras/genética , Proteínas do Citoesqueleto/genética , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica , RNA Longo não Codificante/genética , Transdução de Sinais/fisiologia , Proteínas Correpressoras/metabolismo , Proteínas do Citoesqueleto/metabolismo , RNA Helicases DEAD-box/metabolismo , Células HCT116 , Células HeLa , Humanos , RNA Longo não Codificante/metabolismo , Fase S , Regulação para Cima
4.
Sci Rep ; 8(1): 2410, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402901

RESUMO

Processes that have been linked to aging and cancer include an inflammatory milieu driven by senescent cells. Senescent cells lose the ability to divide, essentially irreversibly, and secrete numerous proteases, cytokines and growth factors, termed the senescence-associated secretory phenotype (SASP). Senescent cells that lack p53 tumor suppressor function show an exaggerated SASP, suggesting the SASP is negatively controlled by p53. Here, we show that increased p53 activity caused by small molecule inhibitors of MDM2, which promotes p53 degradation, reduces inflammatory cytokine production by senescent cells. Upon treatment with the MDM2 inhibitors nutlin-3a or MI-63, human cells acquired a senescence-like growth arrest, but the arrest was reversible. Importantly, the inhibitors reduced expression of the signature SASP factors IL-6 and IL-1α by cells made senescent by genotoxic stimuli, and suppressed the ability of senescent fibroblasts to stimulate breast cancer cell aggressiveness. Our findings suggest that MDM2 inhibitors could reduce cancer progression in part by reducing the pro-inflammatory environment created by senescent cells.


Assuntos
Senescência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Indóis/farmacologia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Compostos de Espiro/farmacologia , Proteína Supressora de Tumor p53/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Senescência Celular/genética , Senescência Celular/efeitos da radiação , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Prepúcio do Pênis/citologia , Raios gama , Humanos , Interleucina-1alfa/antagonistas & inibidores , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Interleucina-6/metabolismo , Pulmão/citologia , Masculino , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/agonistas , Proteína Supressora de Tumor p53/metabolismo
5.
Stem Cell Res ; 16(3): 597-606, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27010655

RESUMO

CD133 is widely used as a marker for stem/progenitor cells in many organ systems. Previous studies using in vitro stem cell assays have suggested that the CD133-expressing prostate basal cells may serve as the putative prostate stem cells. However, the precise localization of the CD133-expressing cells and their contributions to adult murine prostate homeostasis in vivo remain undetermined. We show that loss of function of CD133 does not impair murine prostate morphogenesis, homeostasis and regeneration, implying a dispensable role for CD133 in prostate stem cell function. Using a CD133-CreER(T2) model in conjunction with a fluorescent report line, we show that CD133 is not only expressed in a fraction of prostate basal cells, but also in some luminal cells and stromal cells. CD133(+) basal cells possess higher in vitro sphere-forming activities than CD133(-) basal cells. However, the in vivo lineage tracing study reveals that the two cell populations possess the same regenerative capacity and contribute equally to the maintenance of the basal cell lineage. Similarly, CD133(+) and CD133(-) luminal cells are functionally equivalent in maintaining the luminal cell lineage. Collectively, our study demonstrates that CD133 does not enrich for the stem cell activity in vivo in adult murine prostate. This study does not contradict previous reports showing CD133(+) cells as prostate stem cells in vitro. Instead, it highlights a substantial impact of biological contexts on cellular behaviors.


Assuntos
Antígeno AC133/metabolismo , Próstata/metabolismo , Células-Tronco/metabolismo , Antígeno AC133/genética , Animais , Epitélio/fisiologia , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Plasmídeos/genética , Plasmídeos/metabolismo , Próstata/citologia , RNA/isolamento & purificação , RNA/metabolismo , Regeneração , Células-Tronco/citologia
6.
Methods Mol Biol ; 1402: 119-134, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26721487

RESUMO

RNA fluorescence in situ hybridization (FISH), long an indispensable tool for the detection and localization of RNA, is becoming an increasingly important complement to other gene expression analysis methods. Especially important for long noncoding RNAs (lncRNAs), RNA FISH adds the ability to distinguish between primary and mature lncRNA transcripts and thus to segregate the site of synthesis from the site of action.We detail a streamlined RNA FISH protocol for the simultaneous imaging of multiple primary and mature mRNA and lncRNA gene products and RNA variants in fixed mammalian cells. The technique makes use of fluorescently pre-labeled, short DNA oligonucleotides (circa 20 nucleotides in length), pooled into sets of up to 48 individual probes. The overall binding of multiple oligonucleotides to the same RNA target results in fluorescent signals that reveal clusters of RNAs or single RNA molecules as punctate spots without the need for enzymatic signal amplification. Visualization of these punctate signals, through the use of wide-field fluorescence microscopy, enables the counting of single transcripts down to one copy per cell. Additionally, by using probe sets with spectrally distinct fluorophores, multiplex analysis of gene-specific RNAs, or RNA variants, can be achieved. The presented examples illustrate how this method can add temporospatial information between the transcription event and both the location and the endurance of the mature lncRNA. We also briefly discuss post-processing of images and spot counting to demonstrate the capabilities of this method for the statistical analysis of RNA molecules per cell. This information can be utilized to determine both overall gene expression levels and cell-to-cell gene expression variation.


Assuntos
Hibridização in Situ Fluorescente/métodos , RNA Longo não Codificante/genética , Animais , Adesão Celular , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Microscopia de Fluorescência , Permeabilidade , RNA Longo não Codificante/análise , Fixação de Tecidos/métodos
7.
Front Immunol ; 6: 457, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441962

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of anti-nuclear antibodies. SLE is one of many autoimmune disorders that have a strong gender bias, with 70-90% of SLE patients being female. Several explanations have been postulated to account for the severity of autoimmune diseases in females, including hormonal, microbiota, and gene dosage differences. X-linked toll-like receptors (TLRs) have recently been implicated in disease progression in females. Our previous studies using the 564Igi mouse model of SLE on a Tlr7 and Tlr9 double knockout background showed that the presence of Tlr8 on both X chromosomes was required for the production of IgG autoantibodies, Ifn-I expression and granulopoiesis in females. Here, we show the results of our investigation into the role of Tlr8 expression in SLE pathogenesis in 564Igi females. Female mice have an increase in serum pathogenic anti-RNA IgG2a and IgG2b autoantibodies. 564Igi mice have also been shown to have an increase in neutrophils in vivo, which are major contributors to Ifn-α expression. Here, we show that neutrophils from C57BL/6 mice express Ifn-α in response to 564 immune complexes and TLR8 activation. Bone marrow-derived macrophages from 564Igi females have a significant increase in Tlr8 expression compared to male-derived cells, and RNA fluorescence in situ hybridization data suggest that Tlr8 may escape X-inactivation in female-derived macrophages. These results propose a model by which females may be more susceptible to SLE pathogenesis due to inefficient inactivation of Tlr8.

8.
Nat Cell Biol ; 17(8): 1049-61, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26147250

RESUMO

The TOR (target of rapamycin) kinase limits longevity by poorly understood mechanisms. Rapamycin suppresses the mammalian TORC1 complex, which regulates translation, and extends lifespan in diverse species, including mice. We show that rapamycin selectively blunts the pro-inflammatory phenotype of senescent cells. Cellular senescence suppresses cancer by preventing cell proliferation. However, as senescent cells accumulate with age, the senescence-associated secretory phenotype (SASP) can disrupt tissues and contribute to age-related pathologies, including cancer. MTOR inhibition suppressed the secretion of inflammatory cytokines by senescent cells. Rapamycin reduced IL6 and other cytokine mRNA levels, but selectively suppressed translation of the membrane-bound cytokine IL1A. Reduced IL1A diminished NF-κB transcriptional activity, which controls much of the SASP; exogenous IL1A restored IL6 secretion to rapamycin-treated cells. Importantly, rapamycin suppressed the ability of senescent fibroblasts to stimulate prostate tumour growth in mice. Thus, rapamycin might ameliorate age-related pathologies, including late-life cancer, by suppressing senescence-associated inflammation.


Assuntos
Interleucina-1alfa/metabolismo , Neoplasias da Próstata/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Senescência Celular , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Regulação Neoplásica da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1alfa/genética , Interleucina-6/metabolismo , Masculino , Camundongos SCID , Mitoxantrona/farmacologia , NF-kappa B/metabolismo , Fenótipo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Interferência de RNA , RNA Mensageiro/metabolismo , Sirolimo/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Fatores de Tempo , Transcrição Gênica , Transfecção , Carga Tumoral , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Methods Mol Biol ; 1211: 189-99, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25218386

RESUMO

RNA fluorescence in situ hybridization (FISH) has long been an indispensable tool for the detection and localization of RNA and is increasingly becoming an important complement to other gene expression analysis methods. We detail a streamlined RNA FISH protocol for the simultaneous imaging of multiple RNA gene products and RNA variants in fixed mammalian cells. The technique utilizes fluorescently pre-labeled, short DNA oligonucleotides (20 nucleotides in length), pooled into sets of up to 48 individual probes. The overall binding of multiple oligonucleotides to the same RNA target results in punctate fluorescent signals representing individual RNA molecules without the need for enzymatic signal amplification. Visualization of these punctate signals, through the use of wide-field fluorescence microscopy, enables the quantification of single RNA transcripts. Additionally, by utilizing probe sets with spectrally distinct fluorophores, multiplex analysis of specific RNAs, or RNA variants, can be achieved. We focus on the detection of a cytoplasmic mRNA and a nuclear long noncoding RNA to illustrate the benefits of this method for cell-specific detection and subcellular localization. Post-processing of images and spot counting is briefly discussed to demonstrate the capabilities of this method for the statistical analysis of RNA molecule number per cell, which is information that can be utilized to determine overall gene expression levels and cell-to-cell gene expression variation.


Assuntos
Núcleo Celular/ultraestrutura , Inibidor de Quinase Dependente de Ciclina p21/genética , Citoplasma/ultraestrutura , Hibridização in Situ Fluorescente/métodos , RNA Longo não Codificante/análise , RNA Mensageiro/análise , Adesão Celular , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Núcleo Celular/genética , Citoplasma/metabolismo , Humanos , Microscopia de Fluorescência/métodos , RNA Mensageiro/genética
10.
Nat Commun ; 4: 2939, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24326307

RESUMO

Although mammalian long non-coding (lnc)RNAs are best known for modulating transcription, their post-transcriptional influence on mRNA splicing, stability and translation is emerging. Here we report a post-translational function for the lncRNA HOTAIR as an inducer of ubiquitin-mediated proteolysis. HOTAIR associates with E3 ubiquitin ligases bearing RNA-binding domains, Dzip3 and Mex3b, as well as with their respective ubiquitination substrates, Ataxin-1 and Snurportin-1. In this manner, HOTAIR facilitates the ubiquitination of Ataxin-1 by Dzip3 and Snurportin-1 by Mex3b in cells and in vitro, and accelerates their degradation. HOTAIR levels are highly upregulated in senescent cells, causing rapid decay of targets Ataxin-1 and Snurportin-1, and preventing premature senescence. These results uncover a role for a lncRNA, HOTAIR, as a platform for protein ubiquitination.


Assuntos
Proteínas/metabolismo , RNA Longo não Codificante/metabolismo , Ubiquitinação , Proteínas Argonautas/metabolismo , Ataxina-1 , Ataxinas , Senescência Celular/genética , Proteínas ELAV/metabolismo , Células HeLa , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
Proc Natl Acad Sci U S A ; 110(6): 2169-74, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23345430

RESUMO

The polyamines, putrescine, spermidine, and spermine, are essential polycations, intimately involved in the regulation of cellular proliferation. Although polyamines exert dynamic effects on the conformation of nucleic acids and macromolecular synthesis in vitro, their specific functions in vivo are poorly understood. We investigated the cellular function of polyamines by overexpression of a key catabolic enzyme, spermidine/spermine N(1)-acetyltransferase 1 (SAT1) in mammalian cells. Transient cotransfection of HeLa cells with GFP and SAT1 vectors suppressed GFP protein expression without lowering its mRNA level, an indication that the block in GFP expression was not at transcription, but at translation. Fluorescence single-cell imaging also revealed specific inhibition of endogenous protein synthesis in the SAT1 overexpressing cells, without any inhibition of synthesis of DNA or RNA. Overexpression of SAT1 using a SAT1 adenovirus led to rapid depletion of cellular spermidine and spermine, total inhibition of protein synthesis, and growth arrest within 24 h. The SAT1 effect is most likely due to depletion of spermidine and spermine, because stable polyamine analogs that are not substrates for SAT1 restored GFP and endogenous protein synthesis. Loss of polysomes with increased 80S monosomes in the polyamine-depleted cells suggests a direct role for polyamines in translation initiation. Our data provide strong evidence for a primary function of polyamines, spermidine and spermine, in translation in mammalian cells.


Assuntos
Proliferação de Células , Biossíntese de Proteínas , Espermidina/metabolismo , Espermina/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Polirribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Trends Mol Med ; 16(5): 238-46, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20444648

RESUMO

Chronic inflammation is associated with aging and plays a causative role in several age-related diseases such as cancer, atherosclerosis and osteoarthritis. The source of this chronic inflammation is often attributed to the progressive activation of immune cells over time. However, recent studies have shown that the process of cellular senescence, a tumor suppressive stress response that is also associated with aging, entails a striking increase in the secretion of proinflammatory proteins and might be an important additional contributor to chronic inflammation. Here, we list the secreted factors that make up the proinflammatory phenotype of senescent cells and describe the impact of these factors on tissue homeostasis. We also summarize the cellular pathways/processes that are known to regulate this phenotype--namely, the DNA damage response, microRNAs, key transcription factors and kinases and chromatin remodeling.


Assuntos
Senescência Celular/fisiologia , Inflamação/metabolismo , Animais , Senescência Celular/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Proc Natl Acad Sci U S A ; 106(40): 17031-6, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19805069

RESUMO

Inflammation underlies most age-related diseases, including cancer, but the etiology is poorly understood. One proposed factor is the presence of senescent cells, which increase with age. The senescence response arrests the proliferation of potentially oncogenic cells, and most senescent cells secrete high levels of proinflammatory cytokines and other proteins. The complex senescence-associated secretory phenotype is likely regulated at multiple levels, most of which are unknown. We show that cell surface-bound IL-1alpha is essential for signaling the senescence-associated secretion of IL-6 and IL-8, 2 proinflammatory cytokines that also reinforce the senescence growth arrest. Senescent human fibroblasts expressed high levels of IL-1alpha mRNA, intracellular protein, and cell surface-associated protein, but secreted very little protein. An IL-1 receptor (IL1R) antagonist, neutralizing IL-1alpha antibodies, and IL-1alpha depletion by RNA interference all markedly reduced senescence-associated IL-6/IL-8 secretion. Depletion of the key IL-1R signaling component IRAK1 also suppressed this secretion, and IL-1alpha neutralizing antibodies prevented IRAK1 degradation, indicating engagement of the IL-1R signaling pathway. Furthermore, IL-1alpha depletion reduced the DNA binding activity of NF-kappaB and C/EBPbeta, which stimulate IL-6/IL-8 transcription. IL-1alpha was a general regulator of senescence-associated IL-6/IL-8 secretion because IL-1alpha blockade reduced IL-6/IL-8 secretion whether cells senesced owing to DNA damage, replicative exhaustion, oncogenic RAS, or chromatin relaxation. Furthermore, conditioned medium from IL-1alpha-depleted senescent cells markedly reduced the IL-6/IL-8-dependent invasiveness of metastatic cancer cells, indicating that IL-1alpha regulates the biological effects of these cytokines. Thus, cell surface IL-1alpha is an essential cell-autonomous regulator of the senescence-associated IL-6/IL-8 cytokine network.


Assuntos
Senescência Celular , Interleucina-1alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Antibióticos Antineoplásicos/farmacologia , Anticorpos/farmacologia , Bleomicina/farmacologia , Western Blotting , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Masculino , NF-kappa B/metabolismo , Interferência de RNA , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
14.
Aging (Albany NY) ; 1(4): 402-11, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20148189

RESUMO

Senescence is a cellular program that irreversibly arrests the proliferation of damaged cells and induces the secretion of the inflammatory mediators IL- 6 and IL-8 which are part of a larger senescence associated secretory phenotype (SASP). We screened quiescent and senescent human fibroblasts for differentially expressed microRNAS (miRNAs) and found that miRNAs 146a and 146b (miR-146a/b) were significantly elevated during senescence. We suggest that delayed miR-146a/b induction might be a compensatory response to restrain inflammation. Indeed, ectopic expression of miR-146a/b in primary human fibroblasts suppressed IL-6 and IL-8 secretion and downregulated IRAK1, a crucial component of the IL-1 receptor signal transduction pathway. Cells undergoing senescence without induction of a robust SASP did not express miR-146a/b. Further, IL-1alpha neutralizing antibodies abolished both miR-146a/b expression and IL-6 secretion. Our findings expand the biological contexts in which miRNA-146a/b modulates inflammatory responses. They suggest that IL-1 receptor signaling initiates both miR-146a/b upregulation and cytokine secretion, and that miR-146a/b is expressed in response to rising inflammatory cytokine levels as part of a negative feedback loop that restrains excessive SASP activity.


Assuntos
Envelhecimento/fisiologia , Fibroblastos/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , MicroRNAs/metabolismo , Linhagem Celular , Fibroblastos/citologia , Regulação da Expressão Gênica/fisiologia , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-6/genética , Interleucina-8/genética , MicroRNAs/genética , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo
15.
Proc Natl Acad Sci U S A ; 103(47): 17801-6, 2006 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17098863

RESUMO

Nuclear pores span the nuclear envelope and act as gated aqueous channels to regulate the transport of macromolecules between the nucleus and cytoplasm, from individual proteins and RNAs to entire viral genomes. By far the largest subunit of the nuclear pore is the Nup107-160 complex, which consists of nine proteins and is critical for nuclear pore assembly. At mitosis, the Nup107-160 complex localizes to kinetochores, suggesting that it may also function in chromosome segregation. To investigate the dual roles of the Nup107-160 complex at the pore and during mitosis, we set out to identify binding partners by immunoprecipitation from both interphase and mitotic Xenopus egg extracts and mass spectrometry. ELYS, a putative transcription factor, was discovered to copurify with the Nup107-160 complex in Xenopus interphase extracts, Xenopus mitotic extracts, and human cell extracts. Indeed, a large fraction of ELYS localizes to the nuclear pore complexes of HeLa cells. Importantly, depletion of ELYS by RNAi leads to severe disruption of nuclear pores in the nuclear envelope, whereas lamin, Ran, and tubulin staining appear normal. At mitosis, ELYS targets to kinetochores, and RNAi depletion from HeLa cells leads to an increase in cytokinesis defects. Thus, we have identified an unexpected member of the nuclear pore and kinetochore that functions in both pore assembly at the nucleus and faithful cell division.


Assuntos
Divisão Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Cinetocoros/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Ciclo Celular , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oócitos/fisiologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Interferência de RNA , Fatores de Transcrição/genética , Proteínas de Xenopus/genética , Xenopus laevis
16.
Mol Biol Cell ; 17(9): 3806-18, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16807356

RESUMO

The Nup107-160 complex is a critical subunit of the nuclear pore. This complex localizes to kinetochores in mitotic mammalian cells, where its function is unknown. To examine Nup107-160 complex recruitment to kinetochores, we stained human cells with antisera to four complex components. Each antibody stained not only kinetochores but also prometaphase spindle poles and proximal spindle fibers, mirroring the dual prometaphase localization of the spindle checkpoint proteins Mad1, Mad2, Bub3, and Cdc20. Indeed, expanded crescents of the Nup107-160 complex encircled unattached kinetochores, similar to the hyperaccumulation observed of dynamic outer kinetochore checkpoint proteins and motors at unattached kinetochores. In mitotic Xenopus egg extracts, the Nup107-160 complex localized throughout reconstituted spindles. When the Nup107-160 complex was depleted from extracts, the spindle checkpoint remained intact, but spindle assembly was rendered strikingly defective. Microtubule nucleation around sperm centrosomes seemed normal, but the microtubules quickly disassembled, leaving largely unattached sperm chromatin. Notably, Ran-GTP caused normal assembly of microtubule asters in depleted extracts, indicating that this defect was upstream of Ran or independent of it. We conclude that the Nup107-160 complex is dynamic in mitosis and that it promotes spindle assembly in a manner that is distinct from its functions at interphase nuclear pores.


Assuntos
Polaridade Celular , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/metabolismo , Fuso Acromático/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Extratos Celulares , Células Cultivadas , Células HeLa , Humanos , Cinetocoros/metabolismo , Prometáfase , Transporte Proteico , Xenopus/metabolismo
17.
Mol Cell ; 11(4): 853-64, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12718872

RESUMO

The vertebrate nuclear pore complex, 30 times the size of a ribosome, assembles from a library of soluble subunits and two membrane proteins. Using immunodepletion of Xenopus nuclear reconstitution extracts, it has previously been possible to assemble nuclei lacking pore subunits tied to protein import, export, or mRNA export. However, these altered pores all still possessed the bulk of pore structure. Here, we immunodeplete a single subunit, the Nup107-160 complex, using antibodies to Nup85 and Nup133, two of its components. The resulting reconstituted nuclei are severely defective for NLS import and DNA replication. Strikingly, they show a profound defect for every tested nucleoporin. Even the integral membrane proteins POM121 and gp210 are absent or unorganized. Scanning electron microscopy reveals pore-free nuclei, while addback of the Nup107-160 complex restores functional pores. We conclude that the Nup107-160 complex is a pivotal determinant for vertebrate nuclear pore complex assembly.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Replicação do DNA/genética , Complexo de Proteínas Formadoras de Poros Nucleares/deficiência , Poro Nuclear/metabolismo , Proteínas Nucleares , Subunidades Proteicas/deficiência , Vertebrados/metabolismo , Animais , Feminino , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Varredura , Antígenos de Histocompatibilidade Menor , Poro Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Oócitos/metabolismo , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/metabolismo , Subunidades Proteicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Xenopus , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...